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Abstract 

As a result of rapid urbanization, installation of complex infrastructure and variations in rainfall, 

anthropogenic climate change is making cities increasingly vulnerable to flooding. Downscaling of 

climate change results from Global Circulation Models (GCM) to urban catchment scales are needed 

because these models are not able to describe accurately the rainfall process at the required high 

temporal and spatial resolution for urban drainage studies. In the present study, the applicability of a 

statistical downscaling model (SDSM) is evaluated in downscaling the rainfall. The Coupled Model 

Intercomparison Project phase 5 (CMIP5) ensemble forced by three Representative Concentration 

Pathways (RCPs) (i.e. RCP 2.6, RCP 4.5 and RCP 8.5) scenarios is adapted. The daily rainfall data of 

a small urban catchment Lucas Creek located in Auckland, New Zealand, covering the period 1985 to 

2015 is used as baseline data for calibration and validation of SDSM. While future downscaled 

rainfall data is analysed in three time slices 2030s (2011-2040), 2060s (2041-2070) and 2090s (2071-

2100). SDSM performed well during calibration and validation. The mean daily rainfall showed a 

trend of insignificant changes in 2030s; excess rainfall in the 2060s; and a deficit of rainfall in the 

2090s under all the three scenarios. The mean monthly, seasonal and annual daily rainfall increased 

in the catchment under all the scenarios. Rainfall frequency analysis was performed by fitting the 

Gumbel distribution to the observed and SDSM downscaled rainfall time series. The frequency 

analysis was performed for 2, 3, 4, 5, 10, 15, 20, 30, 50 and 100 year return periods which indicated 

increasing rainfall trends in the future generated time slices. The current results illustrate that SDSM 

have good ability to simulate the rainfall events at the urban catchment scale and, therefore, can be 

adopted with confidence for climate change impact studies of similar nature. 
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1. INTRODUCTION 

A rise in the Earth’s temperature and variations in the associated weather conditions across the globe 

are termed as climate change. Climate change is likely to affect major sectors of the world and 

increase disaster risks. Disaster risks are increased in two ways. Firstly, the frequency and/or severity 

of weather and climate hazards will likely be increased (IPCC 2007). Secondly, communities’ 

vulnerability to natural hazards will simultaneously be increased as a result of the ecosystem 

degradation, reduced availability of resources, and changes in peoples’ livelihoods (Molavi, Muttil et 

al. 2011). In urban catchments, anthropogenic effects, like transforming the natural drainage to fast 

collecting facilities, have increased the risk of flash flooding. The duration and volume of runoff are 

changed by the pattern of drainage systems, permeability and the capacity of recharging (Karamouz, 

Hosseinpour et al. 2010, Willems, Arnbjerg-Nielsen et al. 2012). Urbanization leads to more 

impervious areas, and therefore, decreasing time of runoff concentration and increasing the maximum 

flood discharge. The change in rainfall behaviour and intensity because of climate change will 

exaggerate the flooding risks in urban catchments (Willems et al. 2012). Therefore, it is necessary to 

investigate the impacts of climate change on the rainfall patterns in urban areas so that proper planning 

and management can be done in advance for minimizing the flood risks.  
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At present, Global Climate Models (GCMs) are considered to be the most reliable tool to provide 

climate change information (IPCC 2007). However, GCMs have spatial resolutions too coarse for 

hydrologic impact models and downscaling is usually employed to obtain the desired information in 

terms of hydrometeorology variables (temperature, rainfall etc.) at a very fine spatial resolution or 

station scale (IPCC 2013, Xu 1999a). Statistical and dynamical downscaling are the two major 

existing techniques for downscaling. The former, used by hydrologists to obtain station scale climatic 

information, employs multiple regression models and stochastic weather generators. It is 

computationally less demanding, simple to apply, and efficient (Dibike and Coulibaly 2005, Hashmi et 

al. 2009, Wilby and Dawson 2007, Willems et al. 2012). While the later, involves Regional Climate 

Models (RCMs) which can use initial and boundary conditions from the output of GCMs for selected 

time periods of the global simulation. An extensive detail about these techniques as well as their 

benefits and shortcomings can be found in Xu (1999b) Wilby et al. (2004), Fowler et al. (2007) and 

Rummukainen (2010). 

 

In the Fifth Assessment Report (AR 5) of the Intergovernmental Panel on Climate Change (IPCC), 

new climate change scenarios called RCPs were established based on the CMIP5 (IPCC 2013). These 

RCPs are termed as RCP 2.6, RCP 4.5, RCP 6 and RCP 8.5. RCP 2.6 is the lowest of the four, peaks at 

3.0 W/m2 (~490 ppm CO2 eq.) before 2100 and then declines to 2.6 W/m2 by 2100 (Van Vuuren et al. 

2011). RCP 4.5 gains stabilization without overshoot pathway to 4.2 W/m2 (~650 ppm CO2 eq.) at 

stabilization after 2100 (Thomson et al. 2011). Similarly, RCP 6 gets stabilization without overshoot 

pathway to 6 W/m2 (~850 ppm CO2 eq.) at stabilization after 2100 (Masui et al. 2011). The rising 

radiative forcing pathway in RCP 8.5 leads to 8.5 W/m2 (~1370 ppm CO2 eq.) by 2100 (Riahi et al. 

2011). Extensive details about RCP 2.6, RCP 4.5, RCP 6 and RCP 8.5 can be find in Van Vuuren et al. 

(2011), Thomson et al. (2011), Masui et al. (2011) and Riahi et al. (2011), respectively. The CanESM2 

(Second Generation Canadian Earth System Model) simulates the climate data under CMIP 5 for RCP 

2.6, RCP 4.5 and RCP 8.5. However, the spatial resolution of CanESM2 is too coarse to be compatible 

with hydrological models, the downscaling method can be utilized to bridge these two different scales 

(Chylek et al. 2011, Zhang et al. 2016).    

 

Among the statistical downscaling techniques, SDSM is commonly used (Wilby and Dawson 2007, 

Wilby et al. 2002). SDSM is a hybrid of a stochastic weather generator and regression based 

downscaling methods. It is the first tool of its nature available to the wider climate change impacts 

community (Wilby et al. 2002), and had been coded into software that is freely accessible. The large 

scale circulation patterns and atmospheric moisture variables are used to linearly condition local scale 

weather generator parameters (e.g. rainfall occurrence and intensity) (Wilby et al. 1998). Several 

studies have documented the use of SDSM and have revealed that this model is simple to handle and 

operate (Borges et al. 2017, Hassan et al. 2014, Khan et al. 2006, Wilby et al. 2002, Wilby et al. 1998). 

However, little is known about the applicability of SDSM in urban catchments. 

 

The primary objectives of this study are: (1) to investigate the adaptability of SDSM for downscaling 

rainfall in a small urban catchment, such as the Lucas Creek catchment in the Auckland area; (2) to 

generate local rainfall scenarios in the Lucas Creek catchment under future emission scenarios and 

project a comprehensive temporal characteristic of rainfall; (3) to perform frequency analysis to the 

extreme events. After the screening of appropriate predictors from CanESM2 GCM under RCP 

scenarios, calibration and validation of the SDSM is performed. The characteristics of rainfall as 

projected for future scenarios are discussed at daily, monthly, seasonal and annual temporal scales 

using different indices. This is followed by frequency analysis to investigate the behaviour of extreme 

rainfall events. The findings presented here may provide a scientific reference for decision making 

regarding small urban catchment scale flood control and water resources management in the Lucas 

Creek or any other region that share similar climatic characteristics.  
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2. STUDY AREA AND DATA 

The Lucas Creek catchment located on the northern fringe of Auckland was selected as the case. The 

catchment map is shown in Figure 1. The catchment covers an area of 626.35 ha. Since 1980’s, the 

catchment has undergone significant urban development and more than 75% of the catchment area is 

urbanized. The existence of Water Sensitive Design (WSD) infrastructure favoured the choice of this 

catchment as the location for the study which will be further investigated for climate change impacts 

on WSD infrastructure. Auckland Council (AC) has installed a number of meteorological station in the 

surroundings to measure rainfall and storm water quantity and quality. Daily rainfall data of last 30 

years (1985-2015) were obtained from AC at the nearest rainfall station. The weather station under 

concern, called Oteha at Rosedale Pond, is located at latitude -36.74759, longitude 174.71563. The 

mean annual rainfall in the catchment is between 1104 mm to 1155 mm. The re-analysis data of the 

National Centre of Environmental Prediction (NCEP) large scale predictors ranging from 1948-2015 

were obtained from SDSM website maintained by Wilby (2015) for the Auckland region. Similarly 

large scale predictors of CanESM2 for the AR5 were downloaded from the website of Government of 

Canada (Canada 2017) at daily time step. Three CanESM2 outputs of CMIP5 under RCP 2.6 (low 

forcing scenario), RCP 4.5 (medium stabilization scenario, and RCP 8.5 (high emission scenario) were 

utilized to project future climate scenarios. The large scale predictor’s data of CanESM2 range from 

1961-2005 for current climate and from 2006-2100 for future climate. The period 1985-2005 was used 

to represent the current period and called “baseline” for the future scenarios (Wilby and Dawson 

2015). The future time series were divided into three slices 2030s (2011-2040), 2060s (2041-2070) 

and 2090s (2071-2100). The selection of the future time slices allows assessment of the climate 

change impact on rainfall in a distant future within the catchment.  

 

 
 

Figure 1. Location of study area (Lucas Creek) catchment and major land use descriptions 

3. METHODOLOGY 

SDSM was developed by Wilby et al. (2002) in United Kingdom. It is categorized as a hybrid model, 

utilizing a linear regression method and a stochastic weather generator. The GCM’s outputs are used 

to a linearly conditional or non-conditional process of the local scale weather generator parameters at 

single stations. Rainfall is a conditional process, and it is modelled using a stochastic weather 

generator conditioned on the predictor variables. Five discrete processes performed in the software 

are: (1) screening of predictors; (2) model calibration; (3) synthesis of observed data; (4) generation of 

climate change scenarios; (5) diagnostic testing and statistical analysis (Wilby et al. 2002). In the 

present study, version 4.2 of SDSM was used and a schematic diagram of statistical downscaling was 

established to investigate climate change influence on the rainfall patterns (Figure 2).  
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Figure 2. Schematic illustration of the present study 

A transformation of the fourth root was applied, to take account for the skewed nature of the rainfall 

distribution. During the calibration of SDSM, some parameters such as event threshold and bias 

correction were adjusted in order to obtain the best statistical agreement between observed and 

simulated climate variables (Chen et al. 2012, Wilby and Dawson 2007). 

 

3.1 Predictor selection 

Twenty six different atmospheric variables were used, and these were derived from the daily re-

analysis dataset of the NCEP for 1948–2015, as well as outputs of RCP 2.6, RCP 4.5 and RCP 8.5 

scenarios of CanESM2 from 2006 to 2100. All the atmospheric data was normalised (Hassan et al. 

2014) as given by equation 1; 

�̂�𝑡 =  
𝑢𝑡−�̅�

𝜎𝑢
             (1) 

In which �̂�𝑡 is the normalized atmospheric variable at time t, ut is the original data at time t, �̅� is the 

multiyear average during the period, and σu is the standard deviation. 

Predictor selection was based on physically and conceptually reasonable linkages between large scale 

forcing and local climate response. Explained variance and correlation coefficients statistically support 

the selection of predictors (Huang et al. 2011, Wilby et al. 2002). To obtain the highest coefficient of 

determination and the lowest standard error, the best set of predictors was defined according to the 

partial correlation at a confidence level of 95% with the predictand (p<0.05) (Wilby et al. 2002).  

 

3.2 Calibration and validation of SDSM 

The rainfall data of the Lucas Creek and the NCEP predictors for the period 1985-2015 were split into 

two slices: 1985-2005 and 2006-2015. The first slice (1985-2005) was set for model calibration, while 

the second slice (2006-2015) was used for model validation (as an independent set of data). SDSM 

was calibrated for each month of the year using the same set of seven selected NCEP predictors for the 

calibration period. This model calibration strategy is in line with the one explained in Dibike and 

Coulibaly (2005) and Hashmi et al. (2009). Model validation is performed by testing it on the 

validation (i.e. independent) data set (2006-2015).  

The model calibration and validation was evaluated in terms of coefficient of determination (R2), root 

mean square error (RMSE) and percentage bias (PBIAS) as in equations 2, 3 and 4: 



Statistical rainfall downscaling of a CMIP5 ensemble in urban catchments: An Auckland area case study  Akhter 

1st International Conference on Water and Environmental Engineering, 20-22 Nov 2017, Sydney, Australia  96  

 

𝑅2 =  
∑ (𝑋𝑜𝑏𝑠,𝑖−�̅�𝑜𝑏𝑠)(𝑋𝑠𝑖𝑚,𝑖−�̅�𝑠𝑖𝑚)𝑛

𝑖=1

√∑ (𝑋𝑜𝑏𝑠,𝑖−�̅�𝑜𝑏𝑠 )2𝑛
𝑖=1 ∑ (𝑋𝑠𝑖𝑚,𝑖−�̅�𝑠𝑖𝑚 )2𝑛

𝑖=1

        (2) 

𝑅𝑀𝑆𝐸 =  √∑ (𝑋𝑜𝑏𝑠,𝑖−𝑋𝑠𝑖𝑚,𝑖)𝑛
𝑖=1

2

𝑛
         (3) 

𝑃𝐵𝐼𝐴𝑆 =  
∑ (𝑋𝑜𝑏𝑠,𝑖−𝑋𝑠𝑖𝑚,𝑖)𝑛

𝑖=1

∑ (𝑋𝑜𝑏𝑠,𝑖)𝑛
𝑖=1

𝑋100         (4) 

where 𝑛 is the number of time steps;  𝑋𝑜𝑏𝑠,𝑖 and 𝑋𝑠𝑖𝑚,𝑖 are the obse 

 

rved and simulated values at time step 𝑖 respectively.  

In addition to the above three indices, the downscaled rainfall series was analysed in terms of mean 

monthly daily rainfall and standard deviation in the comparison of observed and simulated data.  

 

3.3 Downscaling future rainfall 

In this study, the period of 1985-2005 was taken as baseline, and the future period was divided into 

2030s (2011–2040), 2060s (2041–2070) and 2090s (2071–2100). The patterns of change about future 

rainfall scenarios compared to baseline were then analysed, using RCP 2.6, RCP 4.5 and RCP 8.5 data. 

Taking the simulation results of SDSM in the modelling rainfall into account, the change of daily, 

monthly, seasonal and annual mean rainfall of Lucas Creek would be analysed.  

Additionally, frequency analysis was performed to investigate the variation in extreme rainfall 

behaviour using annual maximum (AM) data. Frequency analysis helps us to obtain return period of 

the events. Different generated scenarios using predictors from NCEP and CanESM2 had been used 

for this purpose. Frequency analysis can show the effects of future greenhouse gases development on 

the variability of the events quantity. In this research, Extreme Value type I, the Gumbel distribution 

was fitted to AM data. According to Wilby and Dawson (2007),  the Gumbel distribution to the data 

using the AM series in SDSM is given as below after the method of Shaw (1994) given in equation 5:   

𝐹(𝑥) = 1 − 𝑒−𝑒−(𝑥−𝜇)/𝜎
           (5) 

Where 𝜇 is mean and 𝜎 is standard deviation. Thus, the annual maximum for a return period of T-

years can be calculated from equation 6 and 7: 

𝑄𝑇 =  �̅� + 𝐾(𝑇)𝑆𝑄           (6) 

𝐾(𝑇) =  −
√6

𝜋
 (𝛾 + ln ln [

𝑇(𝑋)

𝑇(𝑋)−1
])        (7) 

In which �̅� is the mean of the annual maximums, 𝑆𝑄 is the standard deviation of these maximums, 

𝐾(𝑇) is a frequency factor, 𝑇(𝑋) is the return period in years, and 𝛾 is the Euler constant 

(0.577215655). 

4. RESULTS AND DISCUSSIONS 

4.1 Predictor selection 

Initially, the correlation analysis performed within SDSM between the rainfall of the Lucas Creek and 

the NCEP re-analysis predictors revealed very poor results. Consequently, offline statistical analysis 

was undertaken to improve the results to an acceptable limit. In this regard, a cross-correlation 

analysis between the daily rainfall of the Lucas Creek and the NCEP predictors was performed. An 
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optimal lag or time shift, required to improve the correlation between each predictor–predictand pair, 

was identified. All the predictors were lagged one day (lag -1). The absolute correlation coefficient 

values of results after this analysis are shown in Figure 3. Examination of the Figure shows that the 

correlation coefficient values obtained are well within the acceptable limit as indicated in previous 

studies (Borges et al. 2017, Hashmi et al. 2011a, Hassan et al. 2014). In general, the correlation 

between the predictor variables and each predictand is not high in the case of daily rainfall (Wilby and 

Dawson 2007, Wilby et al. 2002).  Screening of the most relevant predictors’ set was performed in 

SDSM on the basis of correlation, explained variance and p-value among the predictand and the 

individual predictors, and a set of seven predictors was chosen. This is shown in bold text in Table 1. 

The seven chosen predictors were used for calibration of the downscaling model. This predictor 

selection process is consistent with that adopted in similar studies (Dibike and Coulibaly 2005, 

Hashmi et al. 2011a, Huang et al. 2011).  

 

Table 1. Name and description of all NCEP predictors on CanESM2 grid (the one in bold text is 

selected in model calibration) 

 

Pr# Variable Description Pr# Variable Description 

1 ncepmsl Mean sea level pressure 14 ncepp8-f Geostrophic airflow velocity at 

850 hPa 

2 ncepp1-f Geostrophic airflow velocity near the 

surface 

15 ncepp8-u Zonal velocity component at 

850 hPa 

3 ncepp1-u Zonal velocity component near the 

surface 

16 ncepp8-v Meridional velocity component 

at 850 hPa 

4 ncepp1-v Meridional velocity component near 

the surface 

17 ncepp8-z Vorticity at 850 hPa 

5 ncepp1-z Vorticity near the surface 18 ncepp8th Wind direction at 850 hPa 

6 ncepp1th Wind direction near the surface 19 ncepp8zh Divergence at 850 hPa 

7 ncepp1zh Divergence near the surface 20 ncepp500 500 hPa geopotential height 

8 ncepp5-f Geostrophic airflow velocity at 500 

hPa 

21 ncepp850 850 hPa geopotential height 

9 ncepp5-u Zonal velocity component at 500 hPa 22 ncepprcp Precipitation total 

10 ncepp5-v Meridional velocity component at 

500 hPa 

23 ncepps500 Specific humidity at 500 hPa 

height 

11 ncepp5-z Vorticity at 500 hPa 24 ncepps850 Specific humidity at 850 hPa 

height 

12 ncepp5th Wind direction at 500 hPa 25 ncepshum Near surface specific humidity 

13 ncepp5zh Divergence at 500 hPa 26 nceptem Mean temperature at 2m 

 

 
Figure 3. Absolute values of correlation coefficient between the Lucas Creek rainfall and NCEP 

predictors with and without lag 
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4.2 SDSM performance during calibration and validation 

A comparison of the observed and the simulated daily rainfall values during calibration are shown in 

Figure 4. The results for the calibration period showed that there is a difference in the observed and 

simulated daily rainfall (Figure 4 (a)). SDSM simulated the daily rainfall series from NCEP with the 

R2, RMSE and PBIAS values being 0.2863, 6.85 mm/day and -1.20 respectively. This lower R2 value 

indicated that, SDSM underperformed by missing some of the daily extreme rainfall events which is 

comparable with literature which observed even lower values of R2 (Fealy and Sweeney 2007, Khan et 

al. 2006, Pervez and Henebry 2014).  Additionally, Figure 4(b) shows comparisons of the observed 

and the simulated monthly mean daily rainfall and its standard deviation. Examination of Figure 4(b) 

shows that the calibrated model reproduced the monthly mean daily rainfall values quite well. It 

slightly underestimated the mean daily rainfall for the months of January and December and almost 

equally overestimated it in the months of June, August, September, October and November. Wilby et 

al. (2004) noted that the ability of downscaling models is often regarded as low to simulate the 

standard deviation (or variance) of the observed rainfall with great accuracy. Nevertheless, as it can be 

seen in Figure 4(b), SDSM model reproduced the observed standard deviation reasonably well for the 

Lucas Creek catchment. Standard deviation of only four months of the year (January, February, April 

and May), simulated by SDSM was below that of the observed data. For the remaining eight months, 

the simulated and the observed standard deviations are in good agreement with each other. 

  

 
 

Figure 4. SDSM performance during calibration period (1985-2005): (a); evaluation on daily 

basis (b); evaluation on monthly basis 

Similarly, a comparison of the observed and the simulated daily rainfall during validation are shown in 

Figure 5. SDSM simulated the daily rainfall series with R2, RMSE and PBIAS values being 0.319, 

6.36 mm/day and 3.86, respectively (Figure 5 (a)). Monthly mean daily rainfall and its standard 

deviation are shown in Figure 5 (b). The mean daily rainfall was slightly underestimated for the 

months of May, June and December and almost equally overestimated it in the months of January, 

April and July. Nevertheless, the standard deviation of four months of the year (January, February, 

April and May), simulated by SDSM was higher that of the observed data. SDSM is a regression-

based model, and a regression-based method can often explain only a fraction of the observed 

variability in the provided calibration dataset (Nasseri et al. 2013). Therefore, simulating extreme 

rainfall events using regression methods is challenging because extreme events tend to lie at the 

margins or beyond the range of the variability captured by the regression models (Wilby et al. 2002).  

RMSE = 6.85 mm/day, R2 = 0.286, PBIAS = -1.20 

 
(a) 

(b) 
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Figure 5. SDSM performance during validation period (2006-2015): (a); evaluation on daily 

basis (b); evaluation on monthly basis 

4.3 Downscaling rainfall under future emission scenarios 

The calibrated SDSM model was used for future scenario generation. The future scenario generation 

used predictors from CanESM2 for RCP 2.6, RCP 4.5 and RCP 8.5 emission scenarios for the period 

of 2006-2100. The average of twenty ensembles of generated scenarios was compared with the 

baseline. The anomaly was obtained from the absolute difference between the average future periods 

from the baseline monthly average. The positive or negative anomaly indicated that there will be 

increase or decrease of the variable in future time periods, respectively.  

 

4.4 Statistics of future monthly mean daily rainfall  

The projected change of daily rainfall pattern for the Lucas Creek for all the three RCP scenarios 

under 2030s, 2060s and 2090s are shown in Figure 6. The model projected an increase in mean daily 

rainfall in the 2030s, 2060s and 2090s under all the three RCP scenarios. As for RCP 2.6 scenario, the 

change in mean daily rainfall in all the three time slices would not be significant. While under RCP 4.5 

and RCP 8.5 an increasing trend would be noticed in 2060s and 2090s, respectively. Although the 

2060s experienced the highest increase under RCP 2.6 while 2090s under RCP 4.5 and RCP 8.5. The 

increments are ranging from 0.18 to 3.30 mm/day during 2060s under RCP 2.6 and 0.07 to 3.34 

mm/day and 0.38 to 4.04 mm/day during 2090s under RCP 4.5 and RCP 8.5, respectively. The 

difference between 1st and 3rd quartiles, and median would be decreasing with the shift from RCP 2.6 

to RCP 4.5 and finally to RCP 8.5 indicating obvious variations in the daily rainfall.  

The best way of evaluating the characteristics of change in rainfall pattern is the monthly statistics. 

Although the mean daily rainfall for these three time slices will increase compared to the baseline 

period, this increment would be different in different months. While some months would have 

increased rainfall and others would experience decline in rainfall (Figure 7 and 8). An increasing 

RMSE = 6.36 mm/day, R2 = 0.319, PBIAS = 3.86 

 

 

(a) 

(b) 
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pattern is observed from January to May. The maximum positive monthly anomalies are in March, 

April and May in 2060s, March, April and May in 2090s and January and March in 2090s under RCP 

2.6, RCP 4.5 and RCP 8.5 respectively. In contrast, there will be a steady decline in rainfall during all 

the three time slices under all the three RCP scenarios from July to October. The maximum negative 

anomaly in rainfall is 1.068 mm/day in 2030s under RCP 2.6, 1.18 mm/day in 2030s under RCP 4.5 

and 1.28 mm/day in 2060s under RCP 8.5. Furthermore, it is important to note that June and August 

would not observe any significant change in rainfall under RCP 2.6 and RCP 4.5 for all the three time 

slices. 

 
Figure 6. Boxplot showing summarized representation of change in rainfall (compared to base 

period) in 2030s, 2060s, and 2090s under scenarios RCP 2.6, RCP 4.5 and RCP 8.5. The lower 

and the upper boundary of the box indicate 1st and 3rd quartile and middle line represents 

median. The diamonds and dots denote the daily averages and the variation in monthly 

anomalies, respectively. 

 

 
Figure 7. Comparison of the projected rainfall in 2030s, 2060s, and 2090s under scenarios RCP 

2.6, RCP 4.5 and RCP 8.5 to the base period 
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Figure 8. Anomalies in rainfall (compared to base period) in 2030s, 2060s, and 2090s under 

scenarios RCP 2.6, RCP 4.5 and RCP 8.5 

4.5 Future changes of seasonal and annual rainfall 

The changes of seasonal and annual daily mean rainfall (compared to baseline) in the Lucas Creek 

catchment  under scenarios RCP 2.6, RCP 4.5 and RCP 8.5 are shown in Figure 9. It can be seen from  

Figure 9 that under scenario RCP 2.6, the annual mean daily rainfall of future periods (2030s, 2060s 

and 2090s) is 3.52 mm/day, 3.72 mm/day and 3.25 mm/day respectively as compared to baseline value 

of 3.02 mm/day. Similarly, under RCP 4.5, the annual mean daily rainfall of future periods (2030s, 

2060s and 2090s) in the Lucas Creek catchment are 3.14 mm/day, 3.33 mm/day and 3.58 mm/day, 

respectively. While the annual mean daily rainfall amount of 3.09 mm/day, 3.24 mm/day and 3.72 

mm/day is observed in 2030s, 2060s and 2090s, respectively under RCP 8.5. The change of the annual 

mean daily rainfall presents the overall situation of increase under all the three scenarios, and the 

change under scenarios RCP 4.5 and 8.5 are more distinct in 2090s compared to that of other time 

slices and scenario.  

The changes of seasonal mean daily rainfall in the Lucas Creek catchment under scenarios RCP 2.6, 

RCP 4.5 and 8.5 show noticeable differences in different seasons. Under all the three scenarios, the 

seasons in which changes of seasonal mean daily rainfall are most remarkable in the future periods 

(2030s, 2060s and 2090s) are spring and autumn, respectively. The rainfall would be increased by 

almost two fold in the spring in 2060s and 2090s under RCP 2.6, RCP 4.5 and RCP 8.5. While the 

autumn would undergo almost one fold decline in the rainfall. Similar change trends are found for the 

results of winter and summer however with a nominal changing magnitude only. The sharp increment 

in the spring rainfall contradicts the Ministry for the Environment’s assessment that suggests that 

spring rainfall is expected to decrease in the Auckland region (ME 2016). The weakness of SDSM 

simulating low extreme rainfall (not zero) may have contributed to these relatively higher spring 

rainfall estimates while downscaling (Pervez and Henebry 2014). Additionally, the source of predictor 

variables might influence the results as well, like CanESM2 is used in the present study which was not 

the part of GCMs used in the preparation of the Ministry for the Environment’s assessment report.  
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Figure 9. The changes of seasonal and annual mean rainfall (compared to baseline) in 2030s, 

2060s, and 2090s under scenarios RCP 2.6, RCP 4.5 and RCP 8.5 

The projection showed an increasing trend in the rainfall under RCP 4.5 and RCP 8.5 scenarios. 

Additionally, there will also be increasing trend under RCP 2.6, the rate of increase will be lower in 

compared to rest of the scenarios. This can be revealed based on the five years moving average, trend 

line and R2 given in Figure 10. This suggests that the annual trend of projected rainfall has huge 

fluctuations over time. A steady increasing trend is observed by the end of 2040 under all the three 

RCP scenarios while massive fluctuation is clear during the period 2040-2070. Similarly, a significant 

increasing trend is observed under RCP 8.5 while consistent decreasing trend is shown under RCP 2.6 

and RCP 4.5 towards the end of the century.  

 

 
Figure 10. Five years moving average of projected annual mean rainfall from 2011 to 2100 

4.6 Frequency analysis 

Figure 11 shows the AM rainfall frequency analysis results in terms of the Gumbel distribution 

estimated magnitude of the ten chosen return periods (2, 3, 4, 5, 10, 15, 20, 30, 50 and 100 year). It 

can be seen from the Figure that SDSM successfully simulate the magnitudes of rainfall for the ten 

return periods. The Gumbel distribution estimates for simulated values are well within the 2.5% 

percentile and 97.5 percentile obtained using the observed series. However, it appears to simulate the 

low return period (N=1-10 year) rainfall better than high return period (N=30-100 year) rainfall, as the 

departure of simulated values from the corresponding observed values increases with increasing return 
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period. On the basis of the results presented, it can be seen that SDSM is good at simulating AM 

rainfall as compared to the observed AM values and can be used for future frequency analysis.  

 

 
Figure 11. Comparison of Gumbel estimated magnitudes of rainfall for studied return periods 

using observed and simulated AM series 

Rainfall frequency analysis based on the downscaled data by SDSM for the Lucas Creek catchment is 

shown in Figure 12. The Gumbel distribution estimated rainfall amounts for the ten chosen return 

periods obtained using the baseline, RCP 2.6, RCP 4.5 and RCP 8.5 in 2030s, 2060s and 2090s are 

plotted. The Gumbel distribution estimated values show a significant increase in both the frequency 

and the intensity of future extreme events of rainfall. The analysis suggests that a 100 year event at the 

current baseline would become a 3 year event in 2030s under RCP 2.6 and RCP 8.5. While a future 

100 year event would be around 2.5 times that of the 100 year event now under RCP 4.5 in 2030s.  On 

the other hand, the behaviour of future events in 2060s and 2090s under all the three scenarios would 

be the same. A future 10 year storm will have 139.4 mm/day, 149.1 mm/day and 167.5 mm/day under 

RCP 2.6, RCP 4.5 and RCP 8.5 respectively in both 2060s and 2090s. An increase in magnitude of 

low return period rainfall events would also be observed in all the time slices under all the three 

emission scenarios. Overall, the highest increment would be observed in 100 year storm in 2030s 

under RCP 4.5 while a decrease is projected under RCP 8.5. However, a 100 year storm in 2060s and 

2090s will have the same and the highest values under RCP 8.5.  

 

The response of GCMs is important in the estimation of future variations in rainfall due to increase in 

GHG concentrations. The changes in atmospheric circulation patterns in terms of the large scale 

predictors, as suggested by a GCM which can be considered more reliable, are used in SDSM (Hashmi 

et al. 2011b). As the spatial resolution of the current GCMs is still very coarse, their direct rainfall 

output is unreliable. As a result of these inherent uncertainties, the developed frequency analysis from 

CanESM2 might be unable to provide an accurate estimate of future extreme rainfall. However, it 

realizes the fact that the future climate will not be similar to the historical climate (Kabiri et al. 2012). 

Single site rainfall downscaling, in the presence of uncertainties, may suffer from under or 

overestimation of the risks (Harpham and Wilby 2005). In future, climate change will likely 

consequence an increase in the intensity and frequency of extreme rainfall events in the most regions 

of New Zealand (ME 2016). Therefore, frequency calculations might eventually be prepared under the 

climate change (Kabiri et al. 2012). 
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Figure 12. Comparison of Gumbel estimated magnitudes of rainfall for studied return periods 

using AM series for baseline, 2030s, 2060s and 2090s under RCP 2.6, RCP 4.5 and RCP 8.5 

5. CONCLUSIONS AND RECOMMENDATIONS 

Statistical downscaling methods are effective measures to construct the bridge between large scale 

climate change and local scale hydrological response. In this study, SDSM was applied to simulate 

and project the rainfall from a CMIP5 GCM ensemble (CanESM2) in the Lucas Creek catchment of 

the Auckland area. Some important conclusions could be obtained as follows: 

• During calibration and validation, SDSM performed well in the simulation of the rainfall 

series. The rainfall downscaled by NCEP data had good linear relationship with the observed 

ones especially in modelling the monthly, seasonal and annual rainfall.  

• The simulation results of future daily and monthly rainfall showed a variations in projected 

rainfall. The change patterns in the three time slices (2030s, 2060s and 2090s) would be 

observed differently under scenarios RCP 2.6, RCP 4.5 and RCP 8.5. As for RCP 2.6 scenario, 

no significant change will be in mean daily rainfall in all the three time slices. While under 

RCP 4.5 and RCP 8.5 an increasing trend will be noticed in 2060s and 2090s respectively. 

However, when it comes to monthly variations, some months would have increased rainfall 

and others would experience decline in rainfall. An increasing pattern would be observed from 

January to May. In contrast, there is a steady decline in rainfall during all the three time slices 

under all the three RCP scenarios from July to October.  

• When compared to the baseline, there will be noticeable seasonal variations in the rainfall. 

The rainfall of the Lucas Creek catchment will increase more significantly in the spring, and 

decrease considerably in the autumn under all the three emission scenarios. Similarly, the 

change of annual mean rainfall presents the overall situation of increase under all the three 

scenarios. The change under scenarios RCP 4.5 and RCP 8.5 would be more distinct in 2090s 

compared to that of other time slices. Five year moving average showed that there would be 

nominal increase under RCP 2.6 while significant increase would be observed under RCP 4.5 

and RCP 8.5.  

• Frequency analysis of annual daily maximum of the downscaled rainfall in 2030s, 2060s and 

2090s under three future scenarios was carried out to investigate the impact of climate change 

on the occurrence of storm depths. The investigation revealed that extreme rainfall values for 

future projection periods will be increased. A future 100 year event would be around 2.5 times 

that of the 100 year event now under RCP 4.5 in 2030s. While the behaviour of future events 

in 2060s and 2090s under all the three scenarios will be the same.  
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This study provided findings that clearly demonstrate the ability of SDSM to downscale the rainfall 

from a CMIP 5 model (CanESM2), as well as endorsing climate change impacts on rainfall in the 

urbanized Lucas Creek catchment. Further work should be done to convert the rainfall into runoff to 

investigate the impacts of variations in rainfall on flash floods. Additionally, any results coming from 

GCMs are subject to uncertainty and this fact should be taken into account in any assessment using 

GCMs. However, such studies allow urban catchment planners/managers to evaluate the flooding risks 

in urbanized catchments. 
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