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Abstract 
 

Design flow estimation for ungauged catchments is considered to be a challenging task in 

hydrology. Regional Flood Frequency Analysis (RFFA) can be used to estimate design flow for 

ungauged catchments. Commonly adopted RFFA methods include the index flood method, the 

rational method and the quantile regression technique. This paper examines the applicability of the 

generalized additive model (GAM) in RFFA. GAM establishes a well parameterized modelling 

framework which describes the multivariate and nonlinear characteristics of a complex dataset. This 

approach allows flexible specification of regression splines to represent the functional relationships 

between a response variable (i.e. flood quantile) and a suite of temporal and spatial covariates that can 

be continuous or discrete. This is done using a link function and smooth functions of the covariates 

such as catchment characteristics. In this study, both the GAM and log-linear model (LLM) are 

applied in RFFA to a data set of 114 catchments from Victoria State in Australia. Based on 

independent testing, it was found that GAM generally provides more accurate flood quantile 

estimates than the LLM. Further study is needed to confirm this finding. 
 

 
Keywords: Regional Flood Frequency Analysis, GAM, Ungauged Catchment, log-linear model. 

 

 
1. INTRODUCTION 

 
Floods are one of the most common natural hazards and are considered to be one of the costliest 

disasters causing billions of dollars of damage globally. Floods cause loss of lives, economic damage 

and undermine societal wellbeing. The detrimental impacts of floods generally depend on the 

hydrologic, geomorphological and meteorological characteristics of the catchments and precipitation 

events that cause floods. The average annual flood damage is worth over $377 million and 

infrastructure requiring design flood estimate is over $1 billion per annum in Australia (BITRE, 2001). 

Therefore, reliable design flood estimation has been an important aspect of resource management and 

infrastructure design in Australia similar to other countries. 

 
Design flood estimation for ungauged catchments has been a difficult task and is generally associated 

with a large degree of uncertainty (Haddad and Rahman, 2012). For ungauged catchments, design 

floods can be estimated by Regional Flood Frequency Analysis (RFFA), which consists of two 

principal steps, formation of homogeneous regions, and development of flood estimation equations. 

Various forms of RFFA techniques have been proposed in the literature (e.g. index flood method by 

Hosking and Wallis, 1993; Generalised Least Squares based Quantile Regression Technique by Griffis 

and Stedinger, 2007; and parameter regression technique by Haddad et al., 2012). In many of the 

previous RFFA studies, regions were formed based on geographic or administrative boundaries, often 

lacking hydrological similarities (Bates et al., 1998; Rahman et al., 2017). Most of the previous RFFA 

models are based on linearity assumptions although rainfall-runoff process is generally non-linear. 

Generalized Additive Model (GAM) allows complex variable transformation for the predictor 

variables in regression modelling to account for the non-linearity of the flood generation process. GAM 

has not been tested widely in RFFA, particularly in Australia. Hence, the objective of this present study 
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is to test the applicability of GAM in RFFA using a dataset from the State of Victoria, Australia. 
 

 
2. MATERIALS AND METHODS 

 
2.1. Log-linear Model 

 
A multiple linear regression is often used to develop relationship between a dependent variable, Y and 

p predictor variables, X1, X2,…, Xp. This can be expressed for i
th 

observation as below: 
 

𝑦𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + ⋯ + 𝛽𝑝𝑋𝑖𝑝 + 𝜀𝑖
                                                                                                                                            (1)                      

 

where β0  and βj (j = 1, 2, …, p) are unknown parameters (regression coefficients) and  is the error 

term associated with i-th observation (i = 1, 2, …, n), where n = number of observations. The error 

term in Eq. 1 is assumed to be normally distributed N (0, σ
2
) and the model parameters are generally 

estimated by the method of least squares. In RFFA, a log-linear model (LLM) is widely adopted where 
both the dependent and predictor variables are log-transformed before building the regression model 
under the assumption that it will achieve normality of the predictors and linearity between the 
dependent variable and predictor variables. A LLM can be presented as below: 
 

𝑙𝑛(𝑦𝑖) = 𝛽0 + ∑ 𝛽𝑗𝑙𝑛(𝑋𝑗) + 𝜀𝑖
                                                                                                                                                                            (2) 

 
2.2. Generalized Additive Model 

 
Generalized Additive Model (GAM) (Hastie and Tibshirani, 1986; Wood, 2006) allows non-linear 
functions of each of the predictor variables, while maintaining the additivity of the model, which is 
achieved by replacing each linear component in Eq. 1 βjXij by a smooth non-linear function fj(Xij). A 
GAM can then be written as: 

 
 
 

 
= + + + + ……+ + (3) 

 
GAM allows fitting a non-linear function fj to each Xj i.e. manually trialing process of numerous 
transformations on each of the predictor variables can be avoided. Additionally, GAM allows 
checking the impact of each Xj on Y individually. In this model, the smoothness of function fj for the 
variable Xj is summarized via degrees of freedom. In GAM, the linear predictor predicts a known 
smooth monotonic function of the expected value of the response, and the response may follow any 
distribution from exponential family or may have a known mean variance relationship, allowing a 
quasi-likelihood approach (Wood, 2006). 

 
In GAM, to estimate the smooth function fj a spline may be adopted. A number of spline types are 

available (e.g. P-splines, cubic splines and B-splines). In this study, thin plate regression splines are 
adopted as they provide fast computation, and do not require selection of knot locations and have 
optimality in approximating smoothness (Wood 2003, 2006). 

 
2.3 Data Selection 

 
This study uses flood and catchment data from 114 catchments of Victoria State, Australia (Fig1). 
These catchments are subset of Australian Rainfall Runoff Project 5 database (Rahman et al., 2016). 
These catchments have not undergone any major land use change and are not affected by any major 
regulation during the period of streamflow data availability. The catchment area of the selected 114 

catchments range from 3 to 997 km
2 

(mean: 317.5 km
2 

and median: 270.5 km
2
). The annual maximum 
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streamflow record length of selected stations varies from 26 to 62 years, with a mean of 38-years, 
median of 39 years and standard deviation of 5years. The dependent variables are flood quantiles with 
annual exceedance probabilities (AEPs) of 1 in 2, 1 in 5, 1 in 10, 1 in 20, 1 in 50 and 1 in 100, 
represented respectively by Q2, Q5, Q10, Q20, Q50, Q100. The physiographical and meteorological 

variables (predictor), available for each catchment, are summarized in Table 1. 

 

Figure 1. Location of the selected 114 catchments in Victoria, Australia. 
 
 
 

2.4 Model Development 
 

Log-linear Model 
In development of the log-linear model (LLM), both the response variables (Q2, Q5, Q10, Q20, Q50, 
Q100) and predictor variables are log-transformed. Predictor variables in the regression model are 
selected using a backward stepwise selection procedure. For the LLM, only four predictor variables 
are found to be statistically significant: AREA, I6,2, SF and SDEN.  

 

The developed LLM can be written by: 
 

ln(Q) = 𝑏𝑜 + 𝑏1 ln(AREA) + 𝑏2 ln(I6,2) + 𝑏3 ln(SF) + 𝑏4 ln(SDEN)  (4) 

 

Generalized Additive Model 
In the development of GAM model, predictor variables are selected based on the backward stepwise 

procedure for each of the quantiles. Five predictor variables are found to be statistically significant; 

AREA, I6,2, RAIN, SDEN and EVAP. During building of the prediction equation in GAM, the 
“Gaussian family” is adopted with ‘identity’ link function as this is the most common approach. 

 
The general form of the developed prediction equation in GAM is given by: 

 

ln(Q) = 𝛼 + s(AREA) + s(I6,2) + s(RAIN) + s(EVAP) + s(SDEN)  (5)
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Table 1. Descriptive statistics of the selected predictor variables for the 114 catchments in 

Victoria, Australia 
 

Variable Unit Notation Min Mean Max SD 

       

Catchment area km
2

 AREA 3 317.54 997 244.65 

Catchment shape factor - SF 0.281 0.79 1.4341 0.22 

Main stream slope m/km S1085 0.8 13.38 69.9 12.30 

Stream density km/km
2

 SDEN 0.52 1.53 4.25 0.53 

Fraction of catchment covered by 

forest 

 

- 
 

FOREST 
 

0.01 
 

0.59 
 

1 
 

0.35 

Rainfall intensity (6-h duration and 2- 

year return period) 

 

mm/h 
 

I6,2 

 

24.6 
 

34.29 
 

46.7 
 

5.27 

Mean annual rainfall mm RAIN 484.39 931.64 1760.81 319.01 

Mean annual potential 

evapotranspiration 

 

mm 
 

EVAP 
 

925.9 
 

1035.47 
 

1155.3 
 

42.80 

 
 

 
2.5 Model validation 

 
The model performance is evaluated by a 10-fold cross validation method. In this approach, the 

dataset is randomly divided into modelling and test sub-sets. The model is calibrated on the modelling 

sub-set and the model is tested on the test sub-set (Haddad et al., 2013). The following statistical 

measures are adopted in this study to assess the model accuracy: 
 

 
Coefficient of determination,  

(6) 

 
Root mean square error, 

 
 

 
(7) 

Relative root mean square error, r (8) 

 
Mean bias, 

 

 
(9) 

 

Relative mean bias, 
 
 

(10) 

 
 

where zi and  are respectively the local (at site) and regional flood quantile estimates at catchment i, 

 is the local mean of flood quantile (for a given return period) and n is the number of catchments in 

the test data set. 
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3. RESULTS AND DISCUSSION 
 

The predicted and observed flood quantiles for 2, 10 and 50 year return periods are presented in Figure 

2 for both the LLM and GAM. From these plots, it can be seen that GAM generally provides a better 

match between the observed and predicted flood quantiles. However, there is a remarkable degree of 

scatter for large flood quantiles. 

  

  

  
 
Figure 2. Observed versus predicted flood quantiles (Q2, Q10, Q50) for GAM (left side) & LLM (right 

side) 
 

 
Table 2 summarizes the results of the 10-fold cross validation for both the GAM and LLM. It can be 

seen from this table that the GAM has much higher R
2 

values than the LLM. For both the LLM and 

GAM, R
2 

values reduce with increasing return period as expected. The BIAS is relatively smaller for 
the GAM than the LLM. The RMSE values are also smaller for the GAM than the LLM. For rBIAS, 
the LLM has smaller values than the GAM for all the return periods except Q10. For rRMSE, the LLM 
has smaller values than the GAM for all the return periods. Overall, the GAM outperforms the LLM in 
predicting the flood quantiles. 
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Table 2. Comparison of LLM and GAM in RFFA based on a 10-fold cross validation 
 

  Q2 Q5 Q10 Q20 Q50 Q100 

R2 LLM 0.502 0.466 0.484 0.389 0.417 0.385 

 GAM 0.737 0.7 0.676 0.627 0.537 0.495 

BIAS LLM -4.275 -10.83 -17.467 -30.718 -48.48 -68.96 

 GAM 6.023 1.23 -8.93 1.442 3.44 -4.186 

RMSE LLM 26.102 64.8

17 

67.007 149.97 214.462 284.616 

 GAM 18.997 48.5

75 

38.271 117.23 191.246 257.991 

rBIAS LLM 13.9 16.1

76 

52.734 23.26 26.259 30.114 

 GAM 39.952 49.7

51 

5.029 57.27 60.748 68.787 

rRMSE LLM 69.913 83.4

1 

163.346 103.613 107.965 117.574 

 GAM 215.258 266.

15 

241.98 256.124 218.276 228.192 

  

4. CONCLUSION 
 

This study compares GAM and LLM in RFFA using data from 114 catchments in Victoria. The main 
advantage of GAM is that it allows non-linear variable transformation in regression modelling 
relatively easily. From this preliminary analysis, it has been found that GAM can be applied 
successfully in RFFA. Based on independent testing, it was found that the predicted and 
observed flood quantiles have a closer match for the GAM than the LLM. The GAM also shows 

higher R
2
, smaller BIAS and RMSE as compared with the LLM. However, for rBIAS and rRMSE, the 

LLM generally provides better model validation results. Further study is needed to compare these two 
models in RFFA such as examination of outlier catchments and boxplots of relative errors to confirm 
that the GAM fits the observed flood data better. 
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